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An analysis is given of a secondary instability that obtains in a wide class of 
wall-bounded parallel shear flows, including plane Poiseuille flow, plane Couette flow, 
flat-plate boundary layers, and pipe Poiseuille flow. In these flows it is shown that 
two-dimensional finite-amplitude waves are (exponentially) unstable to infinitesimal 
three-dimensional disturbances. This secondary instability seems to be the prototype 
of transitional instability in these flows in that it has the characteristic (convective) 
timescales observed in the typical transitions. In the case of plane Poiseuille flow, 
two-dimensional nonlinear equilibria and quasi-equilibria exist, and the stability of 
the secondary flow is determined by a three-dimensional linear eigenvalue calculation. 
In  flows without equilibria (e.g. pipe flow), a time-dependent stability analysis is 
performed by direct spectral numerical calculation of the incompressible three- 
dimensional Navier-Stokes equations. 

The energetics and vorticity dynamics of the instability are discussed. It is shown 
that the two-dimensional wave mediates the transfer of energy from the mean flbw 
to the three-dimensional perturbation but does not directly provide energy to the 
disturbance. The instability is of an inviscid character as it persists to high Reynolds 
numbers and grows on convective timescales. Maximum vorticity (inflexion-point) 
arguments predict some features of the instability like phase-locking of the two- 
dimensional and three-dimensional waves, but they do not explain its essential 
three-dimensionality. The inviscid vorticity dynamics of the instability shows that 
vortext-stretching and tilting effects are both required to explain the persistent 
exponential growth. The instability is not centrifugal in nature. 

The three-dimensional instability requires that a threshold two-dimensional 
amplitude be achieved (about 1 Yo of the centreline velocity in plane Poiseuille flow) : 
the growth rates are relatively insensitive to amplitude for moderate two-dimensional 
amplitudes. With moderate two-dimensional amplitudes, the critical Reynolds 
numbers for substantial three-dimensional growth are about 1000 in plane Poiseuille 
and Couette flows and several thousand in pipe Poiseuille flow. The asymptotic (as 
R approaches infinity) growth rate in plane Poiseuille flow is approximately 0*15h/U,, 
where h is the half-channel width and U,  is the centreline velocity. 

It is possible to make some progress identifying experimental features of transitional 
spot structure with aspects of the nonlinear two-dimensional/linear three-dimensional 
instability. The principal excitation of the eigenfunction of the three-dimensional 
(growing) disturbance is localized within a given periodicity length (in both the stream 
and cross-stream directions) near the vorticity maxima of the two-dimensional flow ; 
its planwise structure corresponds to that of observed streaks in early transitional 
spots; its vortical structure resembles that of a streamwise vortex lifting off the wall. 
As the three-dimensional disturbance grows to finite amplitude, the flows become 
chaotic with statistical structure similar to that observed experimentally in moderate- 
Reynolds-number turbulent shear flows. 
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1. Introduction 
The process by which a laminar shear flow undergoes transition to turbulence is 

of fundamental fluid-dynamical interest. In this paper, we address this question from 
the viewpoint of stability theory. In particular, we shall isolate an apparently 
universal secondary instability that obtains in wall-bounded shear flows and seems 
to explain the dominant features of the initial transition process in these flows. 

Recent research has emphasized the diverse routes by which a flow may become 
turbulent. On the one hand, there are flows like Bhnard convection (Gollub & Benson 
1980; McLaughlin & Orszag 1982) and Taylor-couette flow (Gorman, Reith & 
Swinney 1980) in which a sequence of ordered transitions may be discerned. In  these 
flows, increasing Reynolds number may bring on chaos after three incommensurate 
birfurcations (Ruelle & Takens 197 1 ), after infinitely many period-doubling bifur- 
cations (Feigenbaum 1980), or intermittently (Manneville & Pomeau 1980). The 
choice of which, if any, of these three scenarios of transition occur seems to be 
dependent on geometry, initial conditions, and other specific features of the flows. 
This sensitivity to detail is perhaps due to the comparatively low Reynolds numbers 
at  which weak chaos first appears in these flows. 

On the other hand, laboratory experiments (Carlson, Widnall & Peeters 1981) and 
numerical simulations (Orszag & Kells 1980) indicate that, in wall-bounded shear 
flows, the transition to turbulence is violent in the sense that the flow ‘snaps’ from 
a laminar state to a strongly chaotic state with apparently no intervening bifurcations 
to another stable solution. In  snap-through transitions, the stability characteristics 
of the mean flow largely determine the early stages of the transition process and 
perhaps the final turbulent flow. 

The instability process to be examined involves essentially three steps : 
(i) primary (linear) instability of the basic shear flow; 
(ii) nonlinear saturation of the primary instability and formation of a secondary 

(iii) secondary instability, i.e. linear instability of the secondary flow. 
flow ; 

Classical hydrodynamical stability theory (Lin 1955 ; Drazin & Reid 1981) addresses 
step (i), while the standard techniques of nonlinear stability theory (Stuart 1960; 
Drazin & Reid 1981) address step (ii). The bulk of this paper addresses step (iii). In 
many cases, the first step or even the first two steps may be absent or unobservable 
in practice, so it may seem bootless to analyse step (iii). However, as discussed further 
below, the sequence (i)-(iii) provides a rational framework in which to understand 
the physics of instabilities leading to chaos and turbulence. 

The primary/secondary instabilities discussed here are distinguished by the fact 
that the primary instability is restricted to be two-dimensional while the secondary 
instability is allowed to be three-dimensional. In plane parallel flows, Squires’ (1933) 
theorem justifies the two-dimensional form of the primary instability; in other 
parallel flows, two-dimensionality (axisymmetry) is assumed. It will be shown that 
the two-dimensional primary instability leads to a nonlinear periodic flow while 
secondary instability likely leads to chaotic behaviour. The three-dimensional 
character of secondary instability is consistent with the idea that turbulence is 
intrinsically three-dimensional. Tne important question as to whether the secondary 
instability results in a tertiary ordered state or a chaotic regime will not be considered 
in great detail here, although a first essay in this direction will be given in $ 7 .  

Choosing the primary instabilities to be three-dimensional rather than two- 
dimensional would complicate the analysis of the secondary instability process. In 
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particular, general three-dimensional modes do not appear to  saturate in ordered 
states in shear flows such as plane Poiseuille flow (Orszag & Kells 1980). This might 
suggest considering three-dimensional primary instability rather than the sequence 
of events (i)-(iii) enumerated above. The point is that, while three-dimensional 
primary instabilities may eventually lead to chaos, they by no means solve the 
transition problem, as the time and space scales of the instability bear no resemblance 
to experimentally observed transitions. On the other hand, as we shall see below, the 
secondary instabilities arising in step (iii) do have features that qualify them as 
transitional instabilities. First, secondary instability is inherently three-dimensional 
and has ‘explosive ’ (convective) growth rates, as opposed to the diffusive growth 
rates of primary exponential instability. Secondly, the instability obtains at Reynolds 
numbers like those observed a t  the onset of transition. For these reasons, we believe 
that the three-dimensional secondary-instability process to be studied here is in fact 
the right framework in which to make a systematic deterministic analysis of a flow 
undergoing an explosive transition to turbulence. Another reason for studying 
secondary instability as described by the three steps listed above is that this scenario 
is similar to that of the instability process found experimentally in the forced 
transition experiments of Klebanoff, Tidstrom & Sargent (1962), Nishioka, Iida & 
Ichikawa (1975), Nishioka, Iida & Kanbayashi (1978) in boundary layers and plane 
Poiseuille flow respectively. Although quantitative comparisons of Klebanoffs 
‘ peak-valley ’ splitting with the secondary instability to  be presented below may 
certainly be fruitful, we will not make these comparisons here (but see the recent work 
of Kleiser & Schumann 1983). Such comparisons (at least in the later stages of 
transition) would best be done using inflow/outflow calculations. Even in the early 
stages of transition, great care must be taken in interpreting the experimental results, 
as will be briefly demonstrated in $4. 

The idea that secondary three-dimensional instability of states induced by primary 
(two-dimensional) instabilities may be a prototype of a transitional instability has 
been discussed by us before (Orszag & Kells 1980; Orszag & Patera 1980, 1981 a). In 
this paper we emphasize the physical properties of this instability and its apparently 
universal character in wall-bounded shear flows. Its universal character in free-shear 
flows is discussed by Brachet & Orszag (1983). 

In $2 the primary linear instabilities of wall-bounded shear flows are discussed. Two 
canonical cases are emphasized : flow in a channel and in a pipe driven by a pressure 
gradient, i.e. plane Poiseuille flow and pipe Poiseuille flow respectively. In $3  the 
nonlinear saturation process of the primary instability is discussed. In $4 the concept 
of linear secondary instability is introduced and applied to the canonical Poiseuille 
flows. In $5 the structure and dynamics of the secondary instability are analysed. 
Then, in $6 the theory is applied to other shear flows, namely plane Couette flow and 
the boundary layer over a flat plate. Finally, in $ 7  the extent to which the secondary 
instability introduced here relates to the actual transition process is examined. It is 
only a t  this point that fully nonlinear three-dimensional interaction is included. In 
the appendices, some technical details of our methods are given. 

2. Primary instability 
Shear flows can be divided into three groups according to their linear stability 

characteristics. The first group, characterized by having inflexional mean-velocity 
profiles, includes those flows that are inviscidly unstable toinfinitesimal disturbances. 
In fact, wall-bounded shear flows found in nature are typically not inflexional so this 
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case will not be considered here. The second group consists of flows that are inviscidly 
linearly stable, but can be unstable to infinitesimal viscous disturbances. Two 
examples of such flows are plane Poiseuille flow and Blasius (flat-plate boundary-layer) 
flow. Both these flows have finite (linear) critical Reynolds numbers but, since their 
instability is driven by viscosity, the flows are stable to disturbances of fixed 
wavenumber a t  sufficiently high Reynolds number. The third group includes flows 
that are linearly stable to  all infinitesimal disturbances. Prototypes are pipe Poiseuille 
flow (Salwen, Cotton & Grosch 1980; Davey & Drazin 1969; Metcalfe & Orszag 1973) 
and plane Couette flow (Davey 1973). 

I n  linear stability analyses of planar shear flows the velocity field is assumed to 
be of the form 

where x, y and z (a, v and w) are the streamwise, spanwise and cross-stream directions 
(velocities) respectively. Here UII is the parallel laminar basic flow (in the streamwise 
direction), and V’ is the perturbation. The streamwise and spanwise wavenumbers 
are a and P respectively. Flow quantities are non-dimensionalized with respect to a 
length h (channel half-width, pipe radius or boundary-layer thickness) and a velocity 
U, (centreline or freestream) ; the resulting Reynolds number is R = U, h / v ,  where 
v is the kinematic viscosity of the fluid. 

The equations of linear theory are obtained by inserting (2.1) into the incompressible 
Navier-Stokes equations (here given for plane Poiseuille flow), 

v = U,, (2) 2 + 6 Re (v’(z) ei(az+pg-wt) 1 (6 4 I ) ,  (2.1) 

d V  2 1  
- + ( v . V ) v  = -vp+ --s+ -V%, 
at R R  

v . v  = 0, (2.3) 
and linearizing with respect to c. Note that the total pressure is p-(2/R)x. The 
boundary conditions on (2.2) are 

v(x,y,z = f 1 , t )  = 0, (2.4) 

Equation (2.4) imposes the no-slip condition at the wall, whereas (2.5) are periodic 
boundary conditions in the streamwise and spanwise directions. While the choice of 
periodic rather than inflow-outflow boundary conditions in the streamwise direction 
may affect primary instability, it is expected that periodicity will not seriously modify 
the secondary instability discussed later because, as will be seen, the eigenfunction 
associated with secondary instability has excitation quite localized (within a given 
periodicity length) in the streamwise direction. 

For plane Poiseuille flow (in which the dimensionless basic flow is given by 
UII = 1 - x 2 ,  ( -  1 < x 6 l ) ,  linear instability occurs a t  R, = 5772 (Orszag 1971). 
Squire’s theorem implies that  the critical disturbance is two-dimensional (x- z )  : the 
critical wavenumber is a, = 1.02. Since the instability in this flow is induced by 
viscosity, the growth rates are typically very small compared to  the convective 
timescale (the latter being O(  1 )  in our non-dimensionalization of (2.2)). 

For example, the most rapidly growing exponential instability of plane Poiseuille 
flow occurs a t  Ropt w 48000; the wavenumber of the disturbance is a = 0.79 and its 
growth rate is Im w = 0.0076. This optimal instability is so feeble that perturbations 
grow by a factor 10 in a time of about 300, in which time a point on the centreline 
moves about 150 channel widths. I n  contrast, transition is observed to occur 
explosively over a few channel widths a t  Reynolds numbers as low as roughly 1000. 
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Similar analyses of the linear stability of axisymmetric shear flows may be made 
in terms of cylindrical polar ( x , r , 6 )  coordinates. I n  pipe Poiseuille flow, the 
undisturbed flow is (1 - r 2 )  2. To date, no linear instability (either axisymmetric or 
non-axisymmetric) has been found for the latter flow. Although there is no rigorous 
proof of the unconditional linear stability of pipe flow, we accept this result and seek 
the cause for transition in this flow elsewhere. 

I n  the above description of linear stability theory, a modal decomposition of the 
perturbation flow field is assumed with individual modes behaving exponentially in 
time. However, in the absence of viscosity, there are disturbances of parallel shear 
flows that grow algebraically in time (Stuart 1965; Ellingsen & Palm 1975; Landahl 
1980). Ellingsen & Palm show that disturbances that are independent of the 
streamwise direction have streamwise velocities that  grow like t .  At finite Reynolds 
numbers, the vortex-shearing mechanism responsible for this algebraic growth 
persists only for a finite time. However, before these disturbances decay at large times 
owing to diffusion and distortion by the mean flow, they can be amplified significantly. 
To investigate this phenomenon, we have considered the evolution of that  disturbance 
that is energetically most favourable (i.e. that  disturbance which is most effective 
in initially extracting energy from the mean flow) in plane Poiseuille flow at R = 1000. 
The form of this disturbance is known to be independent of the streamwise direction 
(Busse 1969). With 01 = 0, p = 1.5, the disturbance reaches a maximum amplitude 
amplification of roughly 10 in a time of 70, after which it decays. Although this 
amplification is significant when compared to those predicted by linear modal 
analysis i t  is small relative to those of our three-dimensional secondary instability. 
We conclude that algebraic mechanisms most probably do not play a major role in 
‘noisy ’ experiments. However, in carefully controlled situations they may prove 
important in achieving the finite-amplitude secondary-flow states required to initiate 
secondary instability. 

3. Nonlinear saturation of primary instability 

Poiseuille flow, the velocity is written 
To study nonlinear saturation of the primary two-dimensional instability in plane 

N 

n=-N 
v@) = UIl(z)%+ v g ) ( z , t ) e i a n s .  (3.1) 

vg) = y ( 2 1 t  13-21 
Reality requires 

(t denoting complex conjugate). Equation (3.1) is the nonlinear extension of (2.1), 
and must therefore include (at least in principle) all Fourier modes in x, i.e. N = co . 
Note that the total mean (parallel) flow is no longer given by the basic flow U,, 
(=  1 - 9 )  in (3.1) but rather by U;  = UII +up).  Therefore the flow is normalized not 
by its centreline velocity or mass flux but rather by the fixed mean pressure gradient, 
2 / R .  

It has been shown numerically that, for a wide class of perturbations and Reynolds 
numbers, the two-dimensional velocity field can be further specified as 

-n 

N 

n - -N  
v(’) = U, , ( z )  2 + V ~ ) ( Z ,  7 )  eian(s-ct) ,  (3.3) 

where two timescales are distinguished. The first timescale t is that for propagation 
of the nonlinear waves (3.3); here the real wavespeed is given by c. The second 
timescale 7 is that for attenuation of the travelling waves, and is related to t by 

7 = tR-l. (3.4) 
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1 ,  I 

-1  ' I 
0 X h 

(a) 

(b)  
FIGURE 1. Stream (a)  and vorticity (6 )  contours of the steady (stable) finite-amplitude two- 
dimensional plane Poiseuille flow (3.1) at R = 4000, a = 1.25 plotted in a coordinate system moving 
with the wave speed c. Here A( = 2n/a) is the wavelength of the primary disturbance. The 
finite-amplitude wave appears as counter-rotating eddies in this frame. Note that in the interior 
of the flow (where viscosity is unimportant) the vorticity contours are very similar to the 
streamlines. This implies that vorticity is nearly convected along streamlines away from the 
boundaries. 
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To classify the solutions (3.3) it is helpful to define the energy (normalized with 
respect to that of U, , )  in the nth streamwise Fourier mode by 

l5 I' (vg?) . vp+)dz 
= 8( 1 +aon) 

and the total two-dimensional energy by 

(3.5) 

On the nonlinear neutral surface in (E@), R, a)-space, exact solutions of the Navier- 
Stokes equations of the form (3.3) exist with no dependence on the time scale 7. Such 
equilibrium solutions are denoted (in the laboratory frame) by vL3. The salient 
features of this nonlinear neutral surface are as follows: 

(i) The slice 
(ii) No finite-amplitude neutral (non-attenuated travelling wave) solutions exist 

below R x 2900 (Grohne 1969; Herbert 1976); 
(iii) For R 2 2900, neutral finite-amplitude solutions exist for a finite band of 

wavenumbers (centred about u N 1.25 of width Aa x 0.5 for subcritical R) (Herbert 
1976) ; 

(iv) For R < 5772, at any given a there are either zero or two finite-amplitude 
equilibria. If there are two, the lower-energy ('lower-branch ') solution is unstable to 
two-dimensional perturbations, while the higher-energy (' upper-branch ') solution is 
stable to all two-dimensional perturbations with x-period 2nla. 

= 0 in the (R,a)-plane is the linear neutral surface; 

The states on the nonlinear ( I D 2 ) ,  R, a)-surface include both nonlinearly saturated 
linearly unstable modes (for R > 5772) as well as additional subcritical states (for 
R 

The existence of the slow timescale 7 in the evolution of general nonlinear 
two-dimensional disturbances can be inferred from the existence of equilibria which 
are independent of 7. To wit, we write the two-dimensional Navier-Stokes equations 

2900) which arise from nonlinear primary instability. 

1 as 
%+ J($,  6) = EV2c, 
at (3.7) 

where $ is the stream function, 6 = V2$ is the y-vorticity and J is the Jacobian 
operator. In  a frame of reference travelling with a two-dimensional equilibrium, (3.7) 
reduces to 

where (3,c) is the equilibrium solution. In  the interior of the flow the R + co limit 

(3.9) 
is non-singular so that 

for some function g.  The validity of (3.9) is demonstrated in figure 1 ,  in which vorticity (c) contours and streamlines (contours of 3) are plotted; it is seen that and 3 do 
in fact have the same form in the interior of the flow. 

To find the timescale of approach to the equilibrium, the steady-state solution is 

$ = $+"$', 6 =  g . + E . s  ( E  + 1 ) .  (3.10) 
perturbed into 

Inserting (3.10) into (3.7) and linearizing with respect to E gives 

5 = s(ii;) + 0(1/R) 

(3.11) 
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For perturbations of the special form 
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(3.12) 

the Jacobian terms in (3.11) vanish, so that disturbances of this type will decay only 
on a viscous timescale, dominating other modes as t -+ 03. It has been shown 
numerically (Orszag & Patera 1980, 1981 a)  that  such quasi-equizibria evolving only 
on the long timescale in fact exist for deviations from (3, 5) much larger than those 
formally valid in deriving (3.1 1 ) .  Indeed, quasi-equilbria exist even for Reynolds 
numbers well below 2900 (although they must decay at large times a t  these low R). 
At R = 1500, a = 1.32, the decay of a finite-amplitude perturbation is about four 
times slower than that of the corresponding linear mode. The fact that the slow 
timescale is relevant even below R = 2900 implies that plane Poiseuille flow has 
effectively stationary secondary states down to quite low Reynolds number. 

The quasi-equilibria appear to be the dominant feature of the nonlinear two- 
dimensional states of plane Poiseuille flow. The long-time evolution of these flows (as 
determined by direct numerical solution of (2.2)-(2.5)) appears smooth and regular 
with no hint of the chaos of real, turbulent flows. 

In  contrast with plane Poiseuille flow, pipe flow is linearly stable, so axisymmetric 
equilibria can only exist if nonlinearity is destabilizing. Numerical solution of the 
Navier-Stokes equations show that initial states predicted to be nonlinearly dangerous 
by amplitude expansion methods (Davey & Nguyen 1971 ; Itoh 1977) are, in fact, 
stable and decay rapidly in t (Patera & Orszag 1981). It is tentatively concluded that 
pipe Poiseuille flow is stable to all finite-amplitude axisymmetric disturbances. 
Furthermore, our numerical solutions suggest that  the slow timescale 7 for evolution 
of two-dimensional states in plane Poiseuille flow does not hold in the evolution of 
axisymmetric perturbations of pipe flow. 

4. Linear secondary instability 
In  this section, we study the stability of two-dimensional equilibria and quasi- 

equilibria of plane Poiseuille flow to infinitesimal three-dimensional perturbations. 
The analysis is also extended to the more complicated case of pipe Poiseuille flow 
where no quasi-equilibria or equilibria seem to exist., 

The flows to be studied are assumed to be of the form of a general two-dimensional 
velocity on which an infinitesimal three-dimensional disturbance is superposed : 

(4.1 a )  

(4.1 b )  

Here dK) refers to  the k-dimensional perturbation (infinitesimal when k = 3).  Only 
one mode is kept in the y-direction (spanwise wavenumber p) owing to  linearity and 
separability; N modes are kept in the streamwise direction owing to nonlinear effects. 
Continuing the multiple-timescale formalism introduced in 0 3, the general form of 
the velocity (4.1) is 

N 
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Three kinds of analysis are now possible. First, we can do an exact linear (in E )  

stability analysis for R > 2900. Here, two-dimensional equilibria exist which do not 
depend on the timescale 7 .  Making a Galilean transformation to the frame of reference 
travelling with speed c (phase speed of the equilibrium) the problem is separable in 
t ,  and (4.2) simplifies to 

N 

N 

+€ x eamt  x Vnm (3) (2) eipmyeianz' ( E  4 I ) ,  (4.3) 
m - f l  n- -N 

where x' = x - c t .  Similar analyses of the three-dimensional stability of two- 
dimensional flow states have been given by Clever & Busse (1974) for BBnard 
convection and Pierrehumbert & Widnell (1982) for periodic arrays of inviscid 
vortices. 

Secondly, an approximate linear stability analysis can be performed for R < 2900, 
the variation of dZ) on the slow timescale 7 being neglected. Such an analysis proceeds 
identically as the first (i.e. (4.3) is still assumed), but v ( ~ )  is no longer an exact solution 
to the steady two-dimensional Navier-Stokes equations. (Clearly this analysis is only 
valid for R sufficiently large. More precisely, it  is valid only if UT = O(uR) % 1,  so 
predictions of neutral stability, cr = 0,  are merely formal. Here u = Re urn.) 

Thirdly, a direct (time-dependent) numerical solution of the flow (4.1) can be 
obtained. To wit, the evolution of the flow developing from initial conditions 
consisting of a finite-amplitude two-dimensional disturbance and an infinitesimal 
three-dimensional perturbation is found by solving the three-dimensional Navier- 
Stokes equations. The instability is detected by following the energies of the 
two-dimensional and three-dimensional components in (4.1) : 

(4 .4a)  

N 

n - o  
E(3) = € 2  (vgk. V g g )  dz = € 2  x Eg'. (4.4b) 

The first two methods are semi-analytical in the sense that the time domain is 
handled analytically (e.g. as an eigenvalue problem). These methods are less general 
than the third (and cannot be readily extended to high resolution in x, x ) ,  but they 
are computationally fast at low resolution, eliminate transients, and can be used to 
determine the basic parametric dependence of the instability. 

Let us now turn to the results of the linear stability eigenvalue calculations for plane 
Poiseuille flow. Upon inserting (4.3) into the incompressible Navier-Stokes equations 
and linearizing with respect to B one obtains the stability equations (Orszag & Patera 
1981 a ) .  

m -*I n = 0 8(1+ l5 &on) s' -1 

1 { a m ( ~ 2 - k i m ) -  R - ( o " - k ; m ) 2 }  w n m - i m p o { ( e *  vz)nm + ( ~ * v , ) , , }  

-inaD{( 8* u,),, + (u  * Us),, + (v* u,),, + (w * Uz),,} 
-kkm{(U*w,)nm+(u* W,)nm+(W*wz)nm+(w* v , ) n m >  = O ,  (4 .5)  

1 { g m - j j  ( D z - k i m ) }  Ynm-ian{(U* uz )nm + (v* vz )nm)  

+imp{(  U* ~ z ) ~ ~  + (u  * U z ) n m  + (IT* u z ) n m  + (w * U , ) n m >  = 0, (4.6) 

(4.7) 

(4.8) 

ianu,, + iprnv,, + Dw,, = 0,  

ipmu,, - ianv,, = cnm, 
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- linear theory (2 modes in x )  

0 

8 

direct simulation (2 modes in x )  

direct simulation (8 modes in x )  

8 8 

P 
FIGURE 2. A plot of the growth rate u of three-dimensional disturbances its a function of spanwise 
wavenumber /? when a = 1.25, R = 4000 in plane Poiseuille flow. Here the two-dimensional 
background state (assumed steady in the moving frame) is an equilibrium solution of the 
Navier-Stokes equations. The positive sign is taken for the symmetry (4.11). Note the large 
(convective) growth rates. 

where D denotes d ldz ,  k2,, = a2n2+P2m2, ( )z denotes d / d x i  and an asterisk * 
indicates convolution : 

Ipl, Id Q N 
_ -  

Also, ( U ,  W) is the two-dimensional (steady) flow ~ $ 2  -d, and (unm,vnm,  w,,) is the 
three-dimensional perturbation, v'n"), . 

Equations (4.3)-(4.8) are consistent with the following symmetries of vgk : 
v$& = v y , ,  UV6 = at, (4.10) 

{un,m(z) ,  V n m ( z ) , W n m ( z ) )  = k (- l)n+l { u n m ( - z ) j v n m ( - z ) >  - w n m ( - z ) l ,  (4.11) 

( u n m , v n m , w n m )  = + { u n - m ,  Awn- , ,  w n - m } .  (4.12) 

The symmetry (4.11) is a spatial symmetry in z ;  both sign possibilities will be 
investigated. Equation (4.12) implies reflectional symmetry in y. Together with the 
reality condition (4.10), it  implies that Imu, = 0, i.e. that the three-dimensional 
wave is phase-locked with the two-dimensional field. This is suggested by direct 
simulations and is verified by the solution of (4.3)-(4.8). The three symmetries 
(4.10)-(4.12) make the numerical eigenvalue calculation much more tractable - the 
requirement that  they be physically relevant will be shown to be satisfied later. Some 
details of the numerical techniques used to solve the eigenvalue problem are given 
in appendix I .  

First, we consider the case where R > 2900 and (4.3) and, hence, (4.5)-(4.8) are 
exact. In figure 2, u is plotted as a function of B at R = 4000, a = 1.25 assuming the 
positive sign in (4.11). Note that for /3 greater than some threshold value three- 
dimensional perturbations grow on a convective timescale (a = O( 1)) .  Although 
maximum growth occurs at B = O(a) ,  the preference in B is very weak. Beyond the 
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0 1 2 3 
P 

4 

FIQURE 3. Same as figure 2, except that the negative sign is chosen for the symmetry (4.11). 

threshold, the growth rate of the secondary instability is indeed quite large. With 
= 015, a disturbance grows in energy by a factor of 10 in a time of order 7, to  be 

contrasted with the most dangerous linear Om-Sommerfeld eigenmode that requires 
nearly two orders of magnitude larger time to achieve similar growth (even at 

The results of a direct numerical solution (using comparable resolution and starting 
with initial conditions with the positive symmetry (4.11) are also plotted in figure 2. 
The good agreement with the linear theory is a useful test of both methods. (Some 
details of the numerical methods used here are given in appendix 11.) The fact that 
the numerical solution conserves the symmetries (4.11), (4.12) but does not impose 
them implies that symmetry-breaking modes cannot be much more unstable than 
symmetry-preserving modes. 

The effect of the symmetry (4.11) is investigated by repeating the stability 
calculation with the negative rather than the positive sign in (4.11). The results are 
plotted in figure 3. The only significant difference between the results plotted in figures 
2 and 3 is the apparent absence of a spanwise wavenumber threshold in the latter. 
We conclude that the general behaviour of an asymmetric-in-z disturbance is similar 
to that of the symmetrized modes (4.11). In  the following p is typically of order unity, 
so the two signs in (4.11) give basically the same result; the positive sign will be used 
unless stated explicitly to the contrary. On the other hand, the symmetry (4.12) is 
a statement about the basic dynamics of the instability ; from the direct simulation 
results i t  appears that  any instabilities that  do not satisfy (4.12) are weak compared 
with those that do. The phase locking of the two-dimensional and three-dimensional 
modes, and the symmetry (4.12), do not seem peculiar to plane Poiseuille flow, as will 
be demonstrated later. 

The Reynolds-number dependence of the three-dimensional growth rate B is 
important, An exact analysis of (4.5)-(4.8) can only be performed down to R = 2900. 
However, the analysis can be extended in an approximate way using the second 
stability analysis method outlined above. A two-dimensional equilibrium which 

Rapt x 48000). 
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FIGURE 4. A plot of the growth rate cr of three-dimensional disturbances as a function of R when 
a = /? = 1.25. These results are obtained using the quasi-steady analysis explained in the text. Note 
the asymptotic independence of u(R)  as R -+ co. 

actually obtains for R > 2900 (e.g. R = 4000) is chosen as the basic state in the 
stability analysis for R < 2900. As indicated previously, we are essentially neglecting 
here the slow timescale 7. The results of such a calculation for a = p = 1.25 are given 
in figure 4 using the equilibrium computed a t  R = 4000, a = 1.25. There are two points 
to be noted here. First, even in the absence of two-dimensional decay, three- 
dimensional growth turns off (for these particular parameter values) at R x 400. 
Thus this bounds the critical Reynolds number for the secondary instability, 
400 5 R < 2900. Second, the instability is inviscid in the sense that as R -+ 00 the 
growth rate becomes independent of R. I n  particular, the elbow in the curve below 
which CT begins to  become sensitive to R is a t  roughly R = 1000. 

To verify the convergence (in N )  of the results presented above and to calculate 
the three-dimensional stability characteristics exactly for low R requires a direct 
numerical calculation, i.e. the third method described above. I n  figure 5, we plot 
In versus time for various Reynolds numbers a t  a = p = 1.32. The 
initial form of v@) is that  of the least stable Orr-Sommerfeld linear mode at the chosen 
@,a). I ts  initial energy, as defined in (4.4), is chosen to be 004 (corresponding to a 
r.m.5. maximum perturbation streamwise velocity of about 20 %). The initial form 
of d3) is chosen to be that of the least stable three-dimensional eigenfunction of the 
Orr-Sommerfeld equation. As predicted by the linear theory (4.5)-(4.8), there is 
strong exponential growth of the three-dimensional disturbance a t  high Reynolds 
number. Furthermore, as suggested by the quasi-steady analysis above, the Reynolds 
number at which viscous effects start to become important is roughly 1000. Indeed, 
the critical Reynolds number suggested by the results plotted in figure 5 is of order 
1000. This number should be compared with the critical Reynolds number predicted 
by classical linear theory, R, = 5772. The 'critical' Reynolds number 1000 cannot 
be taken as a precise number, for within the framework of linear secondary instability 
theory (where no higher three-dimensional modes are generated in y and v ( ~ )  has no 
effect on v@)) all infinitesimal three-dimensional disturbances decay as t --r 00 for 
R < 2900 since all two-dimensional states ultimately decay. 

and In 
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FIGURE 5. Reynolds-number dependence of the three-dimensional growth rate for plane Poiseuille 
flow at a = /I = 125. These results are obtained from a (time-dependent) direct numerical 
simulation. Observe that disturbances decay for R < 1000. 
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FIGURE 6. Streamwise wavenumber dependence of the three-dimensional growth 

rate in plane Poiseuille flow a t  R = 1500, ,8 = 1.32. 

To complete our somewhat cursory parametric mapping of linear secondary 
instability in plane Poiseuille flow we investigate the effect of streamwise wavenumber, 
a, and amplitude A(2) of v@). In figure 6 the results of a direct numerical simulation 
a t  a Reynolds number of 1500 are plotted for two different a. The results show that 
a t  a = 2.0 three-dimensional growth is stronger than a t  a = 1.32, but that  two- 
dimensional decay a t  a = 2.0 is significantly greater than at  a = 1.32. The fact that  
the results plotted in figure 4 give R, 2 400 while those of figure 5 give R, = 1000 
implies that  it is decay of the two-dimensional finite-amplitude disturbance that is 
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FIGURE 7 .  Contours of constant growth rate u for three-dimensional perturbations of the primary 
two-dimensional state a t  R = 4000, a = 1.25, rescaled by p = A(2)/Ak!. The left-hand ordinate is 
,u, while the right-hand scale is the r.m.s. (in x, t )  maximum (in z )  streamwise perturbation velocity; 
the latter is roughly 17 yo when p = 1. Also, x 0.02 whenp = 1. Owing to contouring difficulties 
and limited numerical resolution, the contour shapes in this figure may be only qualitatively 
accurate. 

primarily responsible for the viscous cutoff. It is for this reason that a = 1.32 is chosen 
for the runs plotted in figure 5 .  

The effect of two-dimensional amplitude A(2) is most easily studied (at high 
Reynolds number) in the quasi-steady framework used above (see figure 4). The 
eigenvalue problem (4.5)-(4.8) is solved taking the actual equilibrium v L ~  as the 
two-dimensional steady state with Fourier modes ve) for n = 1, 2, ... resealed by 
p = A(2)/A$2, where A$I is the actual equilibrium amplitude. This analysis is justified 
for p x 1 by the existence of quasi-equilibria in a region of phase space around the 
equilibria. The results of this calculation are plotted in figure 7 in which curves of 
constant growth rate CT are plotted. Note the existence of a threshold amplitude at 
fixed R below which no three-dimensional perturbations grow, highlighting the 
requirement that the primary state be finite amplitude. The amplitude dependence 
of r~ is fairly weak for p x 1, and the instability again turns off for large p. 

At this point we comment briefly on some experimental results due to Nishioka 
et al. (1975). In  figure 15 of their paper, Nishioka et al. claim to distinguish a threshold 
amplitude for two-dimensional nonlinear instability. However, in figure 17 of the 
same paper they demonstrate spatial exponential growth rates of the nonlinear 
disturbance of the order of 0.3 (non-dimensionalized with respect to channel 
half-width), corresponding to a convective growth rate clearly indicative of three- 
dimensional, not two-dimensional, activity. Indeed, in a later paper, Nishioka et al. 
(1978) indicate that growth occurs virtually simultaneously with intense spanwise 
excitation. The reasonable agreement between some two-dimensional theories (e.g. 
Herbert 1977) and the three-dimensional results of Nishioka et al. is perhaps due 
to the fact that, a t  least for the parameters of figure 7 of the present paper, the 
strongest three-dimensional growth occurs forp x 1 and the threshold is not far below 
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FIGURE 8. Reynolds-number dependence of the three-dimensional growth rate in pipe flow at 
a = 1.0, p = 1. Results here are obtained using a direct numerical simulation. Note the very strong 
two-dimensional decay. 

this. Note that the threshold for three-dimensional growth being at  ,u < 1 is 
consistent with the disparity between theoretical two-dimensional amplitude pre- 
dictions and the experimental results of Nishioka et al. (1975), the latter indicating 
'two-dimensional ' (but, in reality, three-dimensional) thresholds well below the 
former (Herbert 1977). 

The instability described above for plane Poiseuille flow would seem to rely heavily 
on the existence of two dimensional equilibria and quasi-equilibria. In the case of pipe 
flow, no such states have yet been found, and it would appear that there is no hope 
of modelling transition by a secondary instability. However, although both the 
analysis and the results are less precise than in plane Poiseuille flow, secondary 
instability does in fact explain some aspects of pipe-flow transition. 

Although the language of multiple-timescale analysis developed above will be used, 
the expansion (4.2) is no longer formally correct as there is no evidence of a slow 
timescale in pipe flow. Therefore, the only available procedure for determining 
pipe-flow stability is direct numerical solution of the time-dependent flow. 

The equations for pipe Poiseuille flow will not be written in detail here. They are 
obtained from the equations for plane Poiseuille flow by the following replacements. 
The streamwise direction x becomes the axial direction, the spanwise direction y 
becomes the azimuthal direction 8, and the cross-stream direction z becomes the radial 
direction r .  Velocities are denoted as before. The azimuthal wavenumber /3 is 
restricted to be integral. Two-dimensional modes now mean axisymmetric modes, 
while three-dimensional modes refer to non-axisymmetric modes. The extent to which 
pipe-flow simulations differ from planar-geometry simulations (in particular, the 
resolution of the pole problem) is discussed in appendix 111. 

The results of calculations of pipe flows with a = 1 ,  ,l3 = 1, analogous to the plane 
Poiseuille flow results plotted in figure 5 ,  are given in figure 8. The initial velocity 
field is assumed to be of the form (4.1). The form of v@) a t  t = 0 is that of the least-stable 
wall mode ; its energy (with respect to that ofthe mean flow) is 0.04. Several comments 
on the results plotted in figure 8 are in order. First, at high Reynolds numbers (e.g. 
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FIGURE 9. Effect of various two-dimensional forcing protocols on the three-dimensional growth rate 
in pipe flow. Freezing the phase of the two-dimensional flow results in no growth, whereas freezing 
the energy but allowing the phase relationships to develop naturally gives strong exponential 
growth. 
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FIGURE 10. Reynolds-number dependence of the three-dimensional growth rate in 
pipe flow with an A-frozen two-dimensional field (a = 1.0, p = 1). 

4000) there is strong exponential growth of the three-dimensional perturbation for 
fairly long times. This should be contrasted with linear theory, which predicts stab- 
ility at  all Reynolds numbers. At a Reynolds number of 4000, a three-dimensional 
perturbation would have to be truly infinitesimal not to reach finite amplitudes before 
being cut off by the decay of the finite-amplitude two-dimensional disturbance. 
However, this growth requires large two-dimensional amplitudes whose origin (e.g. 
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FIQURE 11. A plot of the three-dimensional growth rate in pipe flow as a function of Reynolds 
number (a = 1.0, p = 1). Note the bend in the curve a t  R = 1000-3000. 

external noise, algebraic streamwise vortex growth) is not discussed here. Secondly, 
at Reynolds numbers of the order of 1000, two-dimensional decay is dominant; 
although three-dimensional disturbances are clearly damped at R = 500, i t  is difficult 
to  distinguish a critical Reynolds number as clearly as for plane Poiseuille flow. 

To determine a critical Reynolds number for secondary instability in pipe flow we 
resort to the artifice of forcing the axisymmetric part of the flow to have fixed 
amplitude. (Although this could conceivably be done within the framework of an 
eigenvalue problem, i t  is more easily done as a direct simulation.) There are two ways 
to force the flow and maintain the energy of the axisymmetric flow : the first, termed 
$-frozen (phase-frozen), resets the axisymmetric field after each time step to  its value 
a t  t = 0;  the second, denoted A-frozen (amplitude frozen), normalizes the flow after 
each time step by the factor (E(z)’/l?(2))i, where I?@) is the energy of the axisymmetric 
flow before normalization, and E@) is the desired (constant) axisymmetric energy. 
If the two timescales t and 7 did exist in this flow, #-frozen would correspond to 
eliminating both the t -  and 7-scales, whereas A-frozen would only eliminate the 
attenuation time 7 .  I n  particular, A-freezing does not prohibit nonlinear wave 
propagation, whereas $-freezing does. At R = 4000, a = 1.0, the evolution of a 
non-axisymmetric disturbance in both the $-frozen and A-frozen cases is plotted in 
figure 9. I n  the former case there is no growth, whereas in t,he latter there is strong 
exponential growth. This illustrates the importance of the phase relationship between 
the two-dimensional and three-dimensional waves (as suggested by the symmetry 
(4.12)). 

Next, the numerical experiment whose results are plotted in figure 8 is repeated 
with an A-frozen axisymmetric field. The results are plotted in figure 10. A critical 
Reynolds number is in fact implied by figure 10, but can be better seen by plotting 
the growth rates (T (obtained from figure 10) as a function of R .  This is done in figure 
11. It is seen that there is an elbow in the curve for 1000 < R < 3000 ; below this elbow 
viscous effects are important, whereas above it inviscid growth is dominant. 
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In  summary, pipe flow is susceptible to a strong non-axisymmetric secondary 
instability of decaying axisymmetric states. At high Reynolds numbers exponential 
growth persists for long times, but at low Reynolds numbers the instability is rapidly 
cut off by axisymmetric decay. Assuming a mechanism for sustenance of the 
axisymmetric flow, we obtain a critical Reynolds number of 1000-3000. The results 
given in figures 8-10 are for p = 1 and axisymmetric finite-amplitude flows that have 
(initially) the form of the most-unstable (linear) wall mode. Further numerical 
experimentation with centre modes and higher-P modes may yield new kinds of 
results. 

5. Dynamics of linear secondary instability in plane Poiseuille flow 
The secondary instability described above involves the explosive growth of 

infinitesimal three-dimensional perturbations superposed on a combined flow consi- 
sting of a mean flow and a (relatively) small (but finite-amplitude) two-dimensional 
disturbance. One question concerning the instability is the energetic role of the 
two-dimensional flow. I n  particular, in the absence of the two-dimensional finite- 
amplitude flow, the instability turns off. However, i t  is not obvious whether the 
two-dimensional flow acts only as a catalyst, allowing the mean flow to transfer energy 
to the three-dimensional flow (which i t  could not do in the absence of the two- 
dimensional primary flow), or if the two-dimensional primary flow directly supplies 
energy to  the three-dimensional component. To answer this question, we consider the 
energetics of the three-component system consisting of the mean flow, the two- 
dimensional component, and the three-dimensional modes. I n  terms of our previous 
decomposition into two-dimensional and three-dimensional components (see (4.1 )), 
the new decomposition is 

v[11 = (U, ,  (2) + u62’(2)) 2, 
y[Zl = y ( 2 )  2, 

y[31 = y(3). 

(5.1) 

(5.2) 

(5.3) 

The energetics of this system can then be written as 

where ECi1 is the energy in the ith component, T l j  is the transfer from the ith to  the 
j t h  component, and is the (negative) dissipation in the ith component. (These 
terms are given explicitly in appendix IV.) 

In  figure 12, the terms in (5.6) (normalized by EL3]) are plotted for R = 4000, 
a = /3 = 1.25. It is apparent that  P3 is much smaller than P3; in fact, P3 barely 
balances the dissipation term Or3]. Although the results plotted in figure 12 confirm 
that the two-dimensional component acts like a catalyst (though this term may be 
inappropriate as will be discussed below), there is yet a further distinction to be made. 
Either vrz1 alters the mean flow so that i t  can give energy to d3J, or vr2J is required 
to  mediate energy transfer to  d31 from the mean flow that would not normally allow 
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FIQURE 12. Energetics of secondary instability in plane Poiseuille flow. Note the transfer 7n3 
between the mean flow and the three-dimensional disturbance is much larger than the transfer P3 
from the two-dimensional primary to the three-dimensional secondary. The jagged nature of the 
curves is due to numerical noise in the direct simulation. 

such persistent transfer. It may be shown that the latter is the case by repeating the 
run used to  construct figure 12 but now freezing the mean flow to be the basic 
parabolic profile, i.e. v[’] = U,,  P for all time (which we know is stable to infinitesimal 
disturbances a t  R = 4000). The results of this experiment are plotted in figure 13, 
where it is seen that the instability still obtains and P3 is still significantly greater 
than P3. We remark that the ‘catalyst’ term is perhaps a misnomer, for P3/P3 is 
in fact of order ( E [ 2 ] / E ” ~ ) ~ ,  the scaling that one would naturally expect from the 
definitions of the pj. 

Although the above arguments indicate that the two-dimensional flow acts as a 
catalyst, they do not indicate how it catalyzes the instability. Two of the simplest 
classical arguments are as follows : 

(i) the two-dimensional flow creates locally (in z) inflexional streamwise profiles 
that  are then susceptible to an inflexional instability; 

(ii) the two-dimensional flow creates curved streamline flow that is then unstable 
to  Gortler rolls (Gortler & Witting 1958). 

Neither of these highly simplified explanations can hope to explain all the features 
of the secondary instability presented in this paper; however, they do provide some 
useful insights. For instance, inflexion point (maximum-vorticity) arguments imply 
that the three-dimensional and two-dimensional waves should in fact travel at the 
same speed (see (4.12)). This follows by noting that, in analogy with the inviscid linear 
case, an unstable three-dimensional wave should travel with the velocity of v ( ~ )  a t  
that  point where the vorticity 5 has a maximum. However, from (3.9) the vorticity 
maximum occurs roughly where @ has a maximum, and hence in the steady frame 
it  is stationary. Thus the three-dimensional disturbance must be steady in the steady 
frame of the two-dimensional wave, i.e. (4.12) holds 
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FIGURE 13. Energetics of secondary instability in plane Poiseuille flow with the mean flow frozen 
to be parabolic. Note F3 is still much larger than P3, although P3 would in fact be negative if 
Erz l  were sufficiently small. 

Maximum-vorticity considerations can provide further insights. First, they predict 
that the three-dimensional disturbance eigenfunction should be localized near the 
two-dimensional whorl (point of maximum vorticity), which is indeed the case. 
Secondly, they provide a heuristic motivation for the amplitude dependence plotted 
in figure 7. It is easy to  show that for small p (p = A(2) /ApJ)  the point z, a t  which 
@ is maximized is near the wall, and moves out with increasing p. For p sufficiently 
large z, leaves the viscosity-dominated wall region, so the inviscid instability 
mechanism can become operative. Once the inflexion point is clearly established, the 
instability is relatively insensitive to  further modifications of v ( ~ ) .  These arguments 
imply that the amplitude dependence (see figure 7) and other major features of the 
three-dimensional instability should hold in any wall-bounded flow with a sufficiently 
large two-dimensional perturbation, a hypothesis which is tested in $6. Despite these 
successes, inflexion-point considerations incorrectly predict the basic feature of the 
instability, namely its dimensionality. For, locally inflexional profiles should imply 
instability to two-dimensional disturbances (narrowly excited in x compared to the 
basic flow) as well as three-dimensional disturbances, whereas in fact only three- 
dimensional instability is obtained. 

Explanation (ii) appears plausible, but i t  fails on several counts, as first noted in 
the observations of Klebanoff et al. (1962). First, it should be recognized that the 
instability outlined in $4 is significantly different from Gortler instability in that it 
must have streamwise dependence to exist. I n  fact, as shown below, the secondary 
instability is quite localized in x. Furthermore, the region of excitation of the 
three-dimensional perturbation eigenfunction is near the ' convex wall ', not the 
' concave ' one as would be expected if the instability were driven by centrifugal force 
(see the end of this section). 

The mechanism of secondary instability, in particular its three-dimensionality, is 
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perhaps best explained in terms of general vorticity dynamics. The analysis that  
follows is in fact a general description of some conditions on a flow such that it can 
be subject to  an inviscid exponential instability. 

To begin, the flow is decomposed as before into 

v = v(2) +€V(3),  0 = w(2) + EO(3) ( E  4 l),  (5.71, (5.8) 

where w = V x v, v@) is defined in (3.1), and d 3 )  is as given in (4.1). The linearized 
inviscid vorticity equation (neglecting viscous effects on the basis of the results 
plotted in figure 4) for the three-dimensional perturbation is then given by 

-- - [(0(3) . v) ~ ( 2 )  - ( ~ ( 2 )  . v) 0(3)1+ [(a(~) . v) ~ ( 3 )  - ( v ( 3 )  . v) 0 ( 2 ) 1 .  
a o ( 3 )  

at (5.9) 

There are two distinct effects represented in (5.9). The first bracketed term on the 
right-hand side will be called the stretching term; it mainly contributes owing to 
stretching of the x, z perturbation vorticity by the two-dimensional flow d 2 ) .  The 
second bracketed term will be called the tilting term, its primary role being to tilt 
two-dimensional vorticity (which is solely in the y-direction) into the (x, 2)-plane. 

It may be shown that neither stretching nor tilting alone is sufficient to give 
exponential growth. With tilting alone, i t  follows that 

where + is an  arbitrary potential. Forming the energy gives 

Idj(v(3) . d3))  dx = v ( ~ )  . ( v ( ~ )  x a@)) dx- ( d 3 )  . V#) dx. 
2 dt s s 

(5.10) 

(5.11) 

(5.12) 

The first term on the right-hand side vanishes, while the second can be converted 
into a surface integral (from incompressibility), which then vanishes owing to the 
boundary conditions. Thus tilting alone conserves energy and cannot give growth. 

With stretching alone it follows that 

(5.13) -- - ( o ( 3 )  . V) $2) - @(a . V) o ( 3 )  = v x ( y ( 2 )  x o ( 3 ) ) ,  
ao(3) 

at 
so that 

d J ( o c 3 )  . 9)z dx = 0. 
dt 

As the eigenfunction grows exponentially everywhere in space, it follows that 
d 3 ) .  9 = 0. Therefore the vorticity can be expressed as 

o ( 3 )  = v x +y, (5.14) 

since V , = 0. Equation (5.13) then gives 

(5.15) 

where r j  is an arbitrary function. Including q5 in the convective derivative (as 
v(*).Y = 0)  gives 

(5.16) 
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FIQURE 14. Simple tilting and stretching model for secondary instability. The vortex filament #,( t )  
is stretched into &(t+At)  (the secondary flow v(') is denoted by the dashed whorl) and then 
realigned by the tilting term to line up with S,(t) (but of larger magnitude than # , ( t ) ) .  
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FIGURE 16. Streamwise-wavenumber spectra of d2) and v@) in plane Poiseuille flow. The spectra 
indicate that da) is much more localized in z (within a given periodicity length) than @). 

from which it follows that no exponential modal growth can occur driven only by 
stretching. (Actually (5.16) implies that v ( ~ )  must be a potential flow; the domain must 
be restricted (e.g. by requiring periodicity) to be such that no non-trivial potential 
flow exists.) 

In  a shear flow, one can easily obtain algebraic stretching of vortex lines (Ellingsen 
& Palm 1975); to obtain exponential growth we have shown above that both 
stretching and tilting are necessary. A simple scenario that explains the two roles is 
as follows. If only stretching were present, vortex lines would align with the shearing 
flow and algebraic growth would result. However, if tilting produces new vorticity 
(in the (x, 2)-plane) that re-orients the perturbation vorticity so as to prevent it from 
aligning with the streaming flow, exponential growth is possible. Therefore the actual 
stretching of the filaments is associated with the stretching term, while the redirection 
of the filaments is associated with the tilting term. A geometric picture of the process 
is given in figure 14; it is seen that the tilted primary vorticity is expected to be 
roughly orthogonal to the filaments of perturbation vorticity. 

Let us define the filament and tilting vector fields as 

F = a ( 3 ) -  ( ~ ( 3 )  .9)9,  (5.17) 

T = I d a ) l  ,9(d3) - (d3) .9 )  9 )  (5.18) 

respectively. (Here T is the projection of the tilting term d2) . V V ( ~ )  in (5.9) into the 
(x,z)-plane, while F is the projection of the perturbation vorticity field onto the 
(x, 2)-plane.) Note that, since there is only one mode present in d3),  the directions of 
both F and T are independent of y (modulo sign). The two fields are plotted in figure 
15, where it is seen that, in fact, the two are nearly orthogonal. 

There are several additional noteworthy features in figure 15. First, the three- 
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dimensional perturbation eigenfunction is highly localized in x (within a periodicity 
length), in contrast with the two-dimensional flow (which is the rationale behind 
ignoring the convective piece of the tilting term in the definition of T). This can be 
seen as well in figure 16, in which a plot of the streamwise spectra of v@) and v@) 
is given. The half-width of the streamwise wavenumber spectrum of the three- 
dimensional disturbance is more than twice that of the two-dimensional one, implying 
that the region of excitation in physical space of the three-dimensional component 
is less than half that of the two-dimensional flow. With respect to possible Gortler 
instability, the region of excitation of v ( ~ )  shown in figure 14 is around the whorl of 
v@) ; however, near the whorl, angular momentum is increasing outwards, and 
therefore one would not expect centrifugal instability. 

6. Universality of secondary instability 
The general nature of the arguments given above suggest that linear secondary 

instability should obtain in many shear flows. In this section, the analysis developed 
previously is applied to two additional flows, namely Blasius flow and plane Couette 
flow. As will be seen, secondary instability in Blasius flow and plane Couette flow is 
very similar to that in plane Poiseuille flow and pipe flow respectively, a fact that 
supports the idea that the instability studied here is common in shear flows. 

Blasius flat-plate (zero-pressure-gradient) flow is not a parallel flow, the boundary- 
layer thickness growing with downstream distance xo like (vx0/UO)?,  where Uo is the 
free-stream velocity. However, assuming parallel flow and setting the cross-stream 
velocity to zero, it is found that the linear stability characteristics of Blasius flow 
are very similar to those of plane Poiseuille flow. It is inviscidly stable, but viscosity 
is destabilizing for R < R, 301 (based on the lengthscale 6 = ( v x o / U o ) ~ ) .  The 
corresponding critical wavenumber is a, = 0.179. 

The concept of periodic equilibria is ambiguous in a flow that evolves downstream. 
There are several formal ways to remedy this situation: the mean field can be 
completely frozen, or the mean field can evolve non-diffusively. The latter is more 
attractive in that it is then possible to see the effect of nonlinear interaction on the 
mean flow. In our simulations both diffusion and nonlinear interaction are allowed; 
for several reasons this does not affect the results in any significant way. First, the 
maximum time of integration is 0*25R, all secondary instability results being 
established well before this point. Secondly, the transfer terms Pz + P3 are typically 
10 times bigger than the dissipation term I"]. For some details of the numerical 
simulation see appendix V. 

The parameters for the direct simulation presented here are R = 1000, 
a = /3 = 0 5 0 .  Initial conditions are of the form given in (4.1). As in the case of plane 
Poiseuille flow, two-dimensional quasi-equilibria (or equilibria - the distinction is 
somewhat blurred if one allows mean-flow diffusion) quickly form. For boundary 
layers the picture corresponding to figure 1 is given in figure 1 7 ;  again note the 
coincidence of streamlines and vorticity contours in the interior of the flow. Note it 
appears that there are two-dimensional equilibria (with the mean flow restricted as 
above) a t  this a where linear theory predicts stability. It is also probable that there 
are subcritical equilibria. 

As in the case of plane Poiseuille flow, the two-dimensional equilibria are 
exponentially unstable to infinitesimal three-dimensional disturbances, as shown in 
figure 18, in which a plot of In E@) and In versus time is given. The growth rates 
are smaller (no doubt owing to the smaller 01 and lower Reynolds number). Again 
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FIGURE 17. Two-dimensional quasi-equilibria in Blasius boundary-layer flow at R = 1000, a = 0.5. 
Note the coincidence of vorticity contours and the streamlines (arrows) away from the walls. 

!P3 is roughly 10 times as large as P3, and the x-spectrum of v ( ~ )  is much broader 
than that of Y ( ~ ) .  The symmetry (4.12) holds (although (4.1 1)  cannot), indicating that 
(as in the channel flow) the two- and three-dimensional waves move with the same 
phase speed (in this case c x 0.5). (The reason that the phase speed of the nonlinear 
Tollmien-Schlichting wave differs significantly from its linear counterpart in a 
boundary layer but not in plane Poiseuille flow is not yet understood.) Thus secondary 
instability in Blasius flow is quite similar to that in plane Poiseuille flow, although 
the parameter values a t  which it occurs are slightly different. 

While it would certainly be more relevant to study the stability of quasi-equilibria 
in a growing boundary layer, the localized and strong instability found with the 
parallel-flow assumption and periodic boundary conditions is most likely a reasonable 
first approximation. Indeed, there seems no qualitative difference between the 
present results or those of Wray & Hussaini (1980) for full three-dimensional 
simulations of boundary-layer transition with periodic downstream boundary con- 
ditions and results obtained with inflow-outflow boundary conditions (Orszag 
1976). 

Plane Couette flow would superficially appear to be similar to plane Poiseuille flow. 
It is flow between parallel plates a t  z = 1 ,  driven by motion of the walls, not a pressure 
gradient, with the basic laminar flow given by U,, = 22, - 1 < z < 1. However, plane 
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FIGURE 18. Three-dimensional secondary instability in boundary-layer flow. At 
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0 t 100 

I I 

In E 

R = 1500 
1500 

1000 

500 

500 

R = 1000, 
u x004. 

-50 

FIGURE 19. Three-dimensional secondary instability in plane Couette flow at 
a = /3 = 1.0. A critical Reynolds number of 1000 is singled out. 

Couette flow is in fact much more akin to pipe Poiseuille flow. First, although not 
proved rigorously, it  appears that plane Couette flow is stable to all linear disturbances 
at all R (Davey 1973). Secondly, like pipe flow, there do not seem to be any 
finite-amplitude two-dimensional equilibria (Orszag & Patera 1981 b ) ,  although their 
existence is predicted by low-order finite-amplitude expansions (Davey & Nguyen 
1971 ; Ellingsen, Gjevik & Palm 1970). 

As in the case of pipe flow, decaying secondary flows in plane Couette flow are 
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FIGURE 20. Schematic picture of turbulent spots observed in plane Poiseuille flow experiments 
(Carlson et al. 1981) at R = 1OOO. The features of interest are the spreading angle 0, the advancing 
angle 4, the streak spacing jj and the streak width Ay. 

explosively unstable to infinitesimal three-dimensional perturbations. The results of 
a direct simulation of a plane Couette flow of the form (4.1) are given in figure 19 
a t  a = ,4 = 1.0. Perturbations grow exponentially with growth rates comparable to 
those in plane Poiseuille flow. There is growth a t  R = 1500 but not at R = 500, 
implying a critical Reynolds number somewhere between these two limits. Although 
nonlinear two-dimensional decay is definitely much more pronounced than in plane 
Poiseuille flow, it is less than in pipe flow at low R. For this reason a critical Reynolds 
number can be ascertained without resorting to forcing the two-dimensional flow. 

7. Secondary instability and transition 

to the physically occurring transition process, we can ask three questions: 

experiment ; 

seen in experiments ; 

In determining the extent to which the secondary instability presented here relates 

(i) does the basic parametric dependence predicted by the model agree with 

(ii) does the structure of the instability agree with that of early transition spots 

(iii) does the instability lead to randomness and ‘turbulence ’ ‘1 
In essence, these three questions address the role of secondary instability in early 

transition, late transition and turbulent flow respectively. The first question could 
be answered in detail with the tools we have developed; however, that is not our 
concern here. Furthermore, the reader should be warned that our discussions of the 
last two issues are extrapolative and exploratory in nature. In  particular, in 
addressing question (ii), our use of a nonlinear periodic instability to explain a local 
phenomenon is meant only to indicate that a common mechanism may in fact 
determine the structure of both. 

Before beginning the comparison with experiment outlined above, we remark that 
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(a ) 

FIGURE 21 ( a ) .  For caption see facing page. 

the instability is intrinsically three-dimensional and occurs on a fast (convective) 
timescale, two features which strongly mark actual shear-flow transition but which 
are absent from many models. 

With respect to (i), the single most important parameter governing transition is 
of course the Reynolds number. The critical Reynolds numbers predicted by the 
secondary instability for plane Poiseuille flow (figures 4 and 5 ) ,  pipe flow (figure 11) 
and plane Couette flow (figure 19) are 1000, 1000-3000 and 1000 respectively, which 
are in good agreement with the Reynolds numbers a t  which typical (noisy) flows 
undergo transition. Note that our theory, which requires an appreciable two- 
dimensional disturbance, does not address the early stages of transition in a careful 
experiment, with very low background disturbances, although it is believed that in 
the later stages the secondary instability presented here will again become important. 
In  fact, the existence of a threshold two-dimensional amplitude (figure 7) perhaps 
explains why careful experiments can sometimes achieve laminar flows a t  relatively 
high Reynolds numbers (Nishioka et al. 1975; Pfenninger 1961) - if in the test sect,ion 
initially very small (two-dimensional) perturbations cannot achieve the threshold 
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amplitude required for three-dimensional growth, transition does not occur. This 
argument requires slow growth of two-dimensional disturbances, which is consistent 
with the analysis in $3. 

The above argument suggests that  i t  should be easier to maintain laminar pipe flow 
at high Reynolds numbers than laminar plane Poiseuille given the apparent lack of 
two-dimensional equilibria in the former ; and in fact this is found experimentally. 
The lack of equilibria in pipe flow may also be related to the intermittency found 
in that flow (for an example of how this may occur in a low-order dynamical system 
see Manneville & Pomeau 1980). Forcing the axisymmetric component of pipe flow 
(figures 10 and 1 1 )  separates the intermittency effects from those driving three- 
dimensional transitions. 

Next, question (ii) is addressed, i.e. how well the model predicts (in the case of plane 
Poiseuille flow) the structure and dynamics of turbulent spots. Earlier, theoretical 
work on this question in the context of boundary layers is surveyed by Craik (1980), 
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with particular attention to the Benney & Lin (1960) weakly nonlinear model. A 
schematic picture of a turbulent spot (Carlson et al. 1981) at R = 1000 isgiven in figure 
20. The features to be explained are the spacing and width of the streaks, denoted 
jj and Ay respectively, the spreading angle 8, the advancing angle $ and the velocities 
of the front and rear of the disturbance, vf and v, respectively. The photographs from 
which figure 20 is deduced are obtained in visualization experiments using mica 
flakes - structures in figure 20 correspond to shears sufficiently large to align the 
platelets. 

A reasonable prediction for y and Ay on the basis of secondary instability is 

where Pop, is that spanwise wavenumber which maximizes the growth rate v, and 
AP is the ‘half-width’ of the u(P) curve. From figure 2 (or 3) (taking aopt to be of 
the order of 1.25-1-50 from figure 6) then POpt x 2 and AP x 8 % 1,  from which it 
follows that y x 3.1 (non-dimensionalized with respect to channel half-width) and 
Ayljj x 0 2 5  < 1. These compare favourably with the experimental results, = 3.8, 
Ayljj x 0.2. (Note that Ayly is a measure of the streakiness of the flow.) 

The secondary instability mechanism can be used to predict relationships between 
vf and 8. If it is assumed that the front of the spot is quasi-two-dimensional, then 
as the spanwise tips of the spot proceed downstream one can think of a (finite- 
amplitude) two-dimensional flow advancing into quiescent fluid. Near the spanwise 
tips (located at, say, x = 0, y = 0 at t = 0) ,  we write 

where A is any three-dimensional quantity, say the maximum stress. Travelling with 
the tip (assuming three-dimensional quantities remain small and hence do not affect 
the two-dimensional packet), t = x/vf, so that 

(7.4) 

To find the spreading angle we linearize around x = 0, y = 0, finding dyldx holding 
A constant, i.e. the rays are determined for which a constant threshold shear is 
maintained given that as the instability ‘spreads’ in y it is swept downstream. We 
assume that the three-dimensional and two-dimensional packets travel at the same 
speed on the basis that the corresponding infinite wavetrains do so (cf. (4.2)). 
Performing the calculation, it follows that 

so 
tan8 x -. 

2 V f  

(7.5) 

From figure 5 we take v at R = 1000 to be 0.07. From the experiments vf is about 
0.6, and jj NN 3. Inserting these quantities into (7.6) gives 8 N lo’, in good agreement 
with the experimental value of 8’. It should be noted that the above argument of 
spreading by destabilization does not explicitly require exponential growth (owing 
to the linearization (7.5)). However, the speed with which the instability grows to 
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FIGURE 22. Mean turbulent profile obtained in direct numerical simulation of plane Poiseuille flow 
a t  R = 5000, a = = 1.32. Note the viscous sublayer, buffer region, and logarithmic layer of 8-9 
data points (with von Karman constant of about 046). 

large amplitude (as seen by the streaks remaining behind the front) do suggest an 
exponential mechanism. 

Another feature of the secondary instability reminiscent of actual turbulent shear 
flows is the vortical structure near the region of excitation (cf. figure 15). In figure 
21 we plot projections of the velocity field on ( y ,  2)-planes at  two streamwise locations 
within the (narrow) excitation region of v@). There is a longitudinal (streamwise) 
vortex located near the wall inclined at an angle of roughly 1 6 O ,  indicating a possible 
relation between our secondary instability and the hairpin vortices inclined at 13O-18O 
to the wall observed experimentally (Rajagopalan & Antonia 1979, Brown & Thomas 
1977). 

The last remaining issue (iii) determines whether the secondary instability 
presented here saturates in an ordered tertiary state when it reaches finite amplitude, 
or whether i t  results in chaotic behaviour. On the basis of large numerical simulation 
(Orszag & Patera 1981 b ) ,  we have demonstrated that if a tertiary state exists it is 
unstable. It was found that, starting from initial conditions of the form (4.1) but now 
with e = O(1) rather than infinitesimal (and using correspondingly higher spatial 
resolution to accurately calculate the nonlinear interactions) the flow rapidly 
develops the characteristics normally associated with turbulent channel flow. In 
particular, although significant fluctuations are present in the streamwise velocity 
from horizontal position to horizontal position, averaging over horizontal planes gives 
a mean profile (plotted in wall coordinates in figure 22) in good agreement with 
experiment. 
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Appendix I. Numerical solution of (4.5H4.8) 
The eigenvalue problem given by (4.5)-(4.8) is solved using spectral methods 

(Gottlieb & Orszag 1977). The solution of a problem by such methods involves three 
steps. First, an appropriate spectral expansion must be chosen. Secondly, a projection 
operator must be used to project the (infinite-) dimensional solution onto the 
finite-dimensional (truncated) spectral expansion. Thirdly, the matrix equation 
generated in the previous step (i.e. the discretized differential equation) must be 
inverted. 

In this paper we deal almost exclusively with flows that are periodic in the x 
(streamwise) and y (spanwise) directions and bounded by walls at z = & 1 .  In the 
periodic directions Fourier modes are the natural (and appropriate) expansion. 
Besides providing rapid numerical convergence, they are ideally suited for modal 
analysis (i,e. only one mode eiamY is retained in (4.3)). In the z-direction Fourier 
expansions are no longer optimal. In particular, an expansion should be used that 
converges faster than algebraically (with n) independent of any special conditions at  
the boundaries. An expansion based on the (complete) set of eigenfunctions of a 
singular Sturm-Liouville problem will in fact satisfy this criterion. (Fourier modes, 
which are associated with a regular Sturm-Liouville problem, will not.) A particularly 
good choice is a Chebyshev-polynomial expansion : 

P N  M 

p - o n - - N m - - M  
v =  s I= X vnmp(t) eianx e p  YTp(z). (A 1.1) 

Here Tp is the pth Chebyshev polynomial defined by 

T,(COS@ = cospf3. (A 1.2) 

The fact that Chebyshev-polynomial expansions of smooth functions converge 
faster than algebraically can be demonstrated by noting thatf(z) = Za, T,(z) implies 

f(cos 0) = h(0)  = Za, cosnf3. (A 1.3) that 

Here h is a periodic even function of 0, from which it follows that a, = O(n-P) as 
n + 00 iff is C,. 

Chebyshev polynomials are especially attractive when considering flow near a wall 
(where boundary layers form) in that the resolution (i.e. the spacing of the collocation 
points) goes like 1/P near z = & 1 .  To resolve a boundary layer of thickness S requires 
only 8-4 polynomials (Gottlieb & Orszag 1977). 

The eigenvalue calculation of (4.5)-(4.8) is typically done with P = 32, N = M = 1 .  
The convergence of the results in P has been checked by comparing results obtained 
with P = 16 and P = 32. The convergence in N has been verified using a full 
simulation (with N typically 8). Equations (4.5)-(4.8) are discretized using a Galerkin 
procedure in x (and y) and a collocation (pseudospectral) method in z .  In the 
z-direction, the collocation equations a t  the wall are replaced with the boundary 
conditions (2.4). 

The actual rank of the matrix is reduced by about a factor of 8 due to the three 
symmetries (4.10)-(4.12). In practice, not all four equations (4.5)-(4.8) need be solved; 
after setting up all four equations, it  is possible to  eliminate v,, and [,, algebraically. 
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The algebraic eigenvalue problem is solved using either a global (QR) algorithm, or 
a local inverse Rayleigh iteration. 

Note that in (4.5)-(4.8) (g ,  w) is assumed known. The mean flow ( U ,  W )  (and the 
phase speed c )  are calculated in a very similar fashion as (v$&, B) in (4.5)-(4.8). Global 
methods can no longer be applied (since the problem is nonlinear in ( U ,  W ) ) .  However, 
a Newton iteration still provides rapid convergence. The calculation of the two- 
dimensional equilibria is reported by Herbert (1976) and Orszag & Patera (1981 a ) .  

- _  

_ _  

Appendix II. Direct numerical solution of planar shear flows 
We have already discussed spectral expansions appropriate for the solution of 

wall-bounded flows in appendix I .  In this appendix, we consider time-stepping 
procedures and the required operator inversions in direct numerical solutions of 
planar shear flows. As indicated previously, the velocity is expanded as 

P N  M 

p - 0  n --N m =-M 
v = X Z X v n m p ( t ) e i a n s e i ~ m ~ T p ( z ) ,  (A 2.1) 

where the Tp are the Chebyshev polynomials. Here v satisfies the Navier-Stokes 

aV 1 
equations 

- = v x o - V n +  - V , v + f l ,  (A 2.2) at R 
v . v = o  

v ( x , y , z  = 1 1 , t )  = 0, 

with the boundary conditions 
(A 2.3) 

(A 2.4) 

wherefis a general forcing term (2/R in the case of plane Poiseuille flow), o = V x v ,  
and T is the pressure head. 

There are two distinct time-stepping procedures that we have used. The first, called 
a fractional-step (or splitting) technique, imposes incompressibility and the viscous 
boundary conditions in different fractional time steps. Because the pressure and 
viscous operators do not commute when rigid boundary conditions are imposed, an 
additional time-stepping error is incurred (Orszag & Kells 1980). The time-stepping 
procedure is given by 

(A 2.5) 

A 

G Y + l ( Z ,  y, z = 1 1 )  = 0, 

(A 2.7) 

where a superscript q refers to time step. The first step (A 2.5) incorporates the 
nonlinear effects. With collocation, i t  requires only order N3 log, N operations using 
the fast Fourier transform (which also applies to Chebyshev-polynomial transforms 
viewed as cosine transforms), where N here represents the typical resolution in one 
of the directions. This should be contrasted with the operation count of order N6 if 
a direct Galerkin procedure (not based on transform methods) were used. The 
time-stepping procedure used in (A 2.5) is an Adams-Bashforth explicit scheme, 
which incurs errors of O(Ata)) .  

13 F L M  128 
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The second step, (A 2.6), imposes incompressibility. The vector equations can be 
reduced to a Poisson equation for the croF-stream velocity, which is solved subject 
to the inviscid boundary conditions (i.e. GI = 0 at z = 1). At the end of this step, 
the flow is incompressible, but the viscous boundary conditions are not satisfied. 

The last step, (A 2.7), incorporates the viscous effects and imposes the viscous 
boundary conditions. The time-stepping scheme (Euler backward) is only first order, 
the benefit of a second-order scheme being reduced because of the splitting errors. 
There is no time-step restriction on this step as the scheme is implicit. The overall 
error can be reduced to  O(At2)  or smaller by local Richardson extrapolation methods. 

The remaining point to be discussed is the discretization and inversion of the 
Poisson equations in (A 2.6) and (A 2.7). I n  general, a Galerkin method is used in 5 

and y. I n  z ,  either a tau method (Gottlieb & Orszag 1977) or a collocation- 
diagonalization method is used. The former results in a tridiagonal matrix which can 
be efficiently inverted (Orszag & Kells 1980; Gottlieb & Orszag 1977) in O ( N M P )  
operations, whereas the latter involves diagonalizing a full matrix and requires 
O(NMp2) operations to invert the matrix (Patera & Orszag 1981). With P = 33, 
N = 16, M = 16, a (vectorized) code using the tridiagonal method requires about 0.4 s 
on the Cray-1 computer, whereas the same resolution code with the diagonalization 
method runs roughly three times slower. Collocation-diagonalization becomes more 
attractive when considering non-constant-coefficient equations (see appendices I11 
and V).  

The second time-stepping procedure we have used may be called a full-step method. 
Here we combine the two steps (A 2.6) and (A 2.7) into one step 

(A 2.8) 

(A 2.9) 

(A 2.10) 

(A 2.11) 

(A 2.12) 

where u, v and w are the streamwise, spanwise and cross-stream velocities respectively. 
(We are considering here one typical Fourier mode, say n = m = 1 ,  as (A 2.8)-(A 2.12) 
are linear and hence modes do not mix. We drop the subscripts n, m for convenience.) 
Note that (A 2.8)-(A 2.12) is now second order in At (in contrast to the splitting 
method). We can reduce the system (A 2.8)-(A 2.12) to a single fourth-order equation 
for w = wQ+l by taking D(ia(A 2.8) +$(A 2.9)), eliminating u, v via (A 2.11), and 
adding this to (k2 (A  2.10)), where k2 = a2+P2. The resulting equation is 

(A 2.13) 
1 2 
R At 
-(D2-k2)2W--((02-k2)W = g 

with boundary conditions 
w = D w = O  ( ~ = f l ) .  (A 2.14) 

Here g represents the inhomogeneous terms involving W1, vQ. (Upon solution of 
(A 2.13)-(A 2.141, u and v can then be inferred from incompressibility and the 
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cross-stream vorticity equation.) Equation (A 2.13) is best solved by decoupling i t  
into two second-order equations 

( 0 2 -  k2) w = 5, (A 2.15) 

2 
D2-kk2-  E ) c =  g, (A 2.16) 

after which the solution techniques described above (i.e. tridiagonal or diagonalization 
solution) apply directly. (One subtlety should be pointed out. Only one boundary 
condition, w = 0, can be applied directly to (A 2.15)-(A 2.16). The other should be 
applied using a Green-function technique to determine the appropriate non- 
homogeneous boundary conditions on 6 such that D w  = 0 at z = 

Both the splitting and full time-stepping methods outlined above have been used 
to verify the results presented in this paper. ‘Additional accuracy checks come from 
the agreement between the direct simulation results and the eigenvalue results. The 
codes have also been checked against known results (such as those of linear theory). 
Typical parameter values for the secondary instability calculations are P = 33, 
N = 8, M = 1 ,  At = 0.025. Convergence in all these parameters has been verified by 
either halving or doubling the resolution. The turbulent simulation results presented 
in figure 22 derive from a run made with P = 65, N = M = 32 (Orszag & Patera 
1981 b) .  

1.) 

Appendix III. Numerical simulations of pipe flow 
Pipe-flow simulations differ from planar-flow simulations in three principal ways. 

First, the Poisson operators no longer have constant coefficients. Secondly, the vector 
Laplacian (in the viscous term) is no longer diagonal. Lastly, there is a singularity 
in the coordinate system a t  r = 0. Except for modifications to  accommodate these 
difficulties, pipe-flow simulations proceed very much like simulations in planar 
geometries (see appendix 11). 

The effect of non-constant-coefficient Poisson operators is to  make collocation- 
diagonalization methods more attractive (vis-u-wis tau techniques). The more compli- 
cated equations in cylindrical geometry also preclude the full-step method described 
in appendix 11: the fourth-order equation (A 2.13) no longer exists in the general 
non-axisymmetric case. Therefore we have used splitting methods for the pipe-flow 
calculations. 

The problem of a non-diagonal vector Laplacian (which would lead to large matrix 
inversions) is simply solved, The problem is that if 

(A 3.1) 

then A is not a diagonal matrix (in contrast with the Cartesian case). Here unm,  vnm 
and wnm are the axial, azimuthal and radial velocities respectively. Fourier- 
transformed in x and 8 ;  for now the r-dependence is kept in physical-space 
representation. Also, f is an arbitrary inhomogeneous term. The transformation 

(A 3.2) 

13-2 

I c n m  = unm,  ?I =fi, 
cnm = Vnm-iWnm, f 2  = f i - i f 3 ,  

c n m  = vnm + iwvm, 7 3  = fi + g3 
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gives 

(A 3.3) 

where A is diagonal. (This diagonalization should not be confused with the (eigen- 
function representation) diagonalization of the r-dependence of each element of & 
which is done when collocation is used.) 

The last point concerns the spectral expansion itself. I n  a pipe 0 < r d 1 ,  while the 
Chebyshev variable z satisfies - 1 d z d 1 .  The two domains can be made to  coincide 
in one of two ways. First, the Chebyshev variable can be resealed to  cover only the 
interval [O, 11. This has the disadvantage of crowding many points near r = 0, which 
is not a physical boundary. (Note, however, that  linear theory predicts centre modes 
that are concentrated near the origin; for good resolution of these modes it may in 
fact be wise to rescale.) The other option is to expand the velocities in even or odd 
Chebyshev series, thus maintaining the normal spacing of collocation points at r = 0. 
The parity of the expansion must be chosen to be compatible with the behaviour of 
the variable a t  the origin. The leading behaviour of the velocity as ‘r + 0 (derived 
from a local analysis of K) gives 

Grim N r + m  ( m >  0);  1, l n r  ( m = 0 ) ,  (A 3.4) 

(m=l= 1 ) ;  I ,  l n r  ( m =  I ) ,  (A 3.5) 

(m 2 0). (A 3.6) 

cnm - r* (m- l )  

cnm - r* (m+l )  

Thus the appropriate spectral expansion is 

where v1 = u, v2 = v, v3 = w, 1 = 2 p + b ( k ,  Plml), with 

(A 3.8) 
0 ( r  = 1 ,  seven) or ( r  = 2,3 , sodd) ,  

1 ( r =  1,sodd)  or ( r=2 ,3 , seven) .  
b ( r , s )  = 

The pipe-flow code has been tested against linear theory as well as previous 
nonlinear axisymmetric calculations (Patera & Orszag 1981 ). Resolution tests have 
been performed indicating that P = 32 (or even 16), N = 8 is adequate for resolution 
of wall modes. Higher resolution (in r )  is required for centre modes; rescaling the 
Chebyshev variable to the interval 0 < r ,< 1 in such cases is probably better than 
parity-observing expansions on - 1 < r < 1.  

Appendix IV. Energetics of linear secondary instability 
In  this appendix we write explicitly the terms appearing in (5.4)-(5.6). The energies 

EL2] and EL3] are the same as E(2) and B3) defined previously in (4.4). E[l ]  is defined 
as 

(A 4.1) 

The transfer and dissipation rates are then obtained by taking the scalar product of 
v-n-m and d v n , / d t  and appropriately summing the contributions from the nonlinear 
and viscous terms. The periodic pressure term conserves energy in each Fourier mode 
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and hence does not contribute to transfer (although i t  does transfer energy between 
velocity components in a given Fourier mode). Therefore 

(A 4.2) 
N 

p =  1 
UC 2 .  C. 2 Re (v$) x a:)+) dz ,  

Re (v$i x "$it) dz, (A 4.3) 

Re ($4. (v x a)$&+) dz ,  (A 4.4) 

and 

(A 4.5) 

(A 4.6) 

(A 4 .7 )  

Here o = V x v and (V x = d2) x d3) + d 3 )  x d2). Note that the flow work done 
by the constant pressure gradient is included in DL1I. We also define the normalized 
quantities 

2 g  = ' 1 3 + F 2 3 + 0 7 3 1 ,  
so that 

where r is the growth of the three-dimensional amplitude. 

(A 4.8) 

(A4.9) 

Appendix V. Numerical simulations of boundary layers 
Boundary-layer simulations (with periodic x- and y-dependence) are identical with 

channel simulations except that the semi-infinite [0, 001 physical domain must be 
mapped into the [ - 1,  11 Chebyshev-polynomial domain. This implies that  collocation 
should be used since the mapping introduces (non-trivial) non-constant coefficients 
into the Laplacian. The only point we will discuss here is the choice of mapping. 

Besides the technical requirement that  z = 0 in physical space map into 7 = - 1 
in Chebyshev space, and that z = co map into 7 = 1 we also require good resolution 
within the boundary layer a t  the expense of resolution in the free stream. A mapping 
that works quite well in practice is 

(A 5.1) 

With this mapping half of the collocation points satisfy z < y ,  and half satisfy z > y.  
The results presented in this work were obtained with y = 1-875 (roughly the 
displacement thickness). 

The effect of the mapping (A 5.1) is to transform 8/82  into 

(A 5 .2 )  
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Derivatives can still be obtained in order Plog, P operations (with P the number of 
Chebyshev polynomials in the expansion), if 3/87 is evaluated using transform 
methods while the multiplication by i3ylB.z is done in physical space. 
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